Extracorporeal Life Support Organization (ELSO)

ELSO Registry Trauma Addendum Data Definitions
08/11/2022

For all comments, questions and concerns please email Justyna Swol at jswol@icloud.com
Preface

This document is intended to assist data entry and identify definitions for each field. This document is organized into the sections and subsections that exist on the addendum. We also attempt to identify if fields will be incorporated in mandatory fields by highlighting those data elements.

Descriptions of fields in this document

Field Name is the name of the variable as it appears in the addendum.

Definition/Explanation/Example provides the definition of the variable with an explanation of how to collect the variable and, when appropriate, an example of choosing the correct data collection.

Data Entry Rules refers to formatting rules for data entry and any warnings or restrictions on data entry. For example, the user will receive a Soft Notification or warning when entering data that falls outside common values or if that value could represent a more common entry in a different unit. The warning does not necessarily mean data has been entered incorrectly; it is just an opportunity for the user to double check data entry. The data enterer will receive a Hard Limit when data is restricted from entry. This means ELSO assesses the value to be incorrect. For example, the entry of “Intracranial Pressure Monitor” after the Date of Death is not allowed. (The possibility of error exists; please email Justyna Swol at jswol@icloud.com if an unwarranted Hard Limit is received).

Collection/Modification describes the dates during which the data has been collected. If there was a modification of the method by which a variable is collected, the date when that modification occurred is noted here.

Table Name is a descriptor that provides the name of the table in which a given variable is stored. ELSO data is a relational database, meaning that different data elements are stored in different tables with common rows that allow merging of tables.

Column Name/Stored Values describes the column or variable name and stored values for a given variable. For example, the data field “Damage Control Surgery” is stored under Column Name (or variable name) “DCS” and is stored with values “No = 0”, “Yes = 1”, and “Unknown = -1.”
Mandatory Fields

We indicate mandatory fields in two ways. First, the box for the Field Name has a red background (see below). Second, the Definition/Explanation/Example includes the sentence “This is a required field.” See example below:

Mandatory Data Field
Extracorporeal Life Support Organization (ELSO) Registry Trauma Addendum Data Definitions

When should I complete a Trauma Addendum? When trauma is the underlying reason for ECMO indication.

- Examples:
 - A patient involved in a motor vehicle collision, is diagnosed with multiple long bone fractures and blunt abdominal trauma, and now has developed respiratory failure due to abdominal compartment syndrome.
 - A brain injured patient develops ventilator induced lung injury due to high tidal volume mechanical ventilation as a consequence of targeted pCO₂ for increasing intracranial pressure.
 - A patient with blunt injury of the chest and abdomen who requires cardiac support to restore circulation prior to bleeding coagulopathy.

When should not I complete a Trauma Addendum? When the underlying reason for ECMO indication is not trauma.

- Examples:
 - A patient with a fracture of the radius and fibula requiring fixation due to motor vehicle collision who has concomitant viral illness who progresses to ARDS from viral pneumonia requiring ECMO.
 - A patient with hypothermia and coagulopathy with no further injuries (no fractures, no blunt trauma, no crush injury) who requires rewarming via ECMO.
Addendum
Arrive here by clicking the “Addendum” tab in a given patient Run. Then click “+Add Trauma”

<table>
<thead>
<tr>
<th>ECLS Indication</th>
<th>Definition/ Explanation/ Example</th>
<th>Data Entry Rules</th>
<th>Collection / Modification</th>
<th>Table Name</th>
<th>Column Name / Stored Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary failure: The use of extracorporeal membrane oxygenation for support of respiratory failure by providing gas exchange support after direct traumatic injury to the respiratory system. Injuries may include pulmonary contusion, blast injury, major airway injury (bronchi, trachea, etc.), acute traumatic airway obstruction, pleural injuries, fat or air embolism, and inhalational injury. Example: A 25yo male patient suffers a motor vehicle collision. Chest x-ray, on primary survey, demonstrates extensive right-sided soft tissue emphysema extending to the neck. Flexible bronchoscopy of the shows a 1 cm subtotal transection of the right mainstem bronchus. The patient deteriorates (SaO2 84% despite of 100% FiO2) becomes severely hypoxemic (pH 7.18, pO2 45mmHg). He was cannulated by veno-venous ECMO for pulmonary support.</td>
<td>Indicate “yes” by checking the box next to the indication. Each indication has its own corresponding box. By checking the corresponding box, the user affirms that indication is present. If a box is not checked, it means that indication was not present. Multiple indications are possible. At least one of the items in this list must be checked.</td>
<td></td>
<td>TRAUMA.ECLSIndicationTrauma</td>
<td>Lookup table: TRAUMA.ECLSIndicationTraumaCodes 1 = Pulmonary failure 2 = Cardiac failure (incl. cardiogenic shock) 3 = Cardiac arrest 4 = Hemorrhagic Shock 5 = Septic shock 6 = Enable Lung protective ventilation 7 = Rewarming</td>
<td></td>
</tr>
</tbody>
</table>
Injuries may include traumatic cardiac rupture, ventricular rupture, myocardial contusion and/or stunning, or coronary artery rupture.

Example: A 52yo old male suffers a fall injury from a height of more than 10 feet (3 meters) and was intubated on the scene due to GCS of 3. Focused Assessment Sonography for Trauma (FAST) estimates a small pericardial effusion, not hemodynamically significant. CT scan indicates a large bilateral hemo-pneumothorax, several rib fractures, and sternal fracture. Chest tubes were inserted bilaterally. The patient developed cardiac arrest during transfer to the ICU. After 10 minutes of CPR the patient has sustained return of spontaneous circulation (ROSC). However, Left Ventricular Ejection Fraction is less than 15%. The patient is femorally cannulated for VA-ECMO.

Cardiac arrest: Choose only if the cardiac arrest and the need for CPR is a direct result of traumatic injury with or without sustained ROSC. Sustained ROSC occurs when chest compressions are not required for 20 consecutive minutes and signs of circulation persist (Jacobs et al, Cardiac arrest and CPR outcome reports: Utstein templates from ILCOR. Circulation. 2004;110(21):3385-972004).

Injuries may include but not limited to myocardial contusion or rupture, bleeding, air or fat embolism, hypothermia, septic shock, etc.

If achievement of sustained ROSC is unsuccessful, ECPR (Extracorporeal Cardio-Pulmonary Resuscitation) may be indicated. ECPR is the application of rapid-deployment veno-arterial extracorporeal membrane oxygenation, to provide circulatory support in patients in whom conventional cardiopulmonary...
resuscitation (CPR) is unsuccessful (sustained ROSC).

For trauma patients with cardiac arrest and ECPR, the ECPR Addendum should also be completed.

Example: A 45yo male suffered blunt chest trauma after a fall from a horse. Primary survey chest X-ray shows a left pneumothorax, evacuated immediately with the chest tube. Despite immediate chest tube insertion, respiratory failure worsened. During intubation bradycardia, ventricular fibrillation, and finally asystole occurred. The patient did not have ROSC and was cannulated by veno-arterial with CPR in progress.

Hemorrhagic shock: the application of veno-arterial extracorporeal membrane oxygenation for the sole purpose of supporting or restoring the circulation as a result of massive hemorrhage. This must be the result of traumatic injury although there is no specific injury which must occur (however, this is frequently associated with thoracic aortic injuries, pelvic fractures, and/or great vessels injury).

Example: A 34yo male suffers a motorcycle collision. He is noted to be hemodynamically unstable at the scene. Upon arrival in the ED his blood pressure was 70/40 mmHg with heart rate 128 beats/min. The initial labs show hemoglobin level of 4.9 g/dL, pH of 6.99, PaCO2 of 65 mmHg, BE -10 and PaO2/FiO2 ratio of 70 mmHg. Focused Assessment Sonography for Trauma (FAST) shows bilateral hemothorax. The patient remained hemodynamically unstable despite massive blood product replacement. He was femorally cannulated by veno-arterial ECMO.
Septic shock: Shock due to the presence of an infective organism directly related to the traumatic event. This most often occurs in the presence of posttraumatic abdominal sepsis or wound infections.

Example: A 38yo male suffered a 3rd degree open fracture of the lower extremity. He is stabilized and transferred to a Level 1, Trauma center for surgery 3 days after the event. He develops shock unresponsive to intervention and grows gram negative rods from both his blood and wound. He was cannulated for VA-ECMO.

Enable Lung Protective Ventilation: the application of extracorporeal membrane oxygenation for the sole purpose of enabling lung protective ventilation in the absence of direct lung trauma (i.e., posttraumatic systemic inflammatory response (SIRS) with multiorgan failure).

Example: 28yo female suffers severe blunt abdominal trauma (spleen and liver rupture) and multiple lumbar spine fractures after motor vehicle collision. Successful surgery was performed immediately to control the intra-abdominal bleeding. On post-op day 3, she develops multiorgan failure (renal, pulmonary and liver disfunction) due to posttraumatic systemic inflammatory response with PaO2/FiO2 ratio of 80 mmHg. She is placed on veno-venous ECMO.

Rewarming: Hypothermia requiring extracorporeal rewarming after trauma (isolated, accidental hypothermia excluded); Injuries may include crush injury, fractures, blunt trauma.

Example: A 32 yo avalanche victim is found after more than 35 min. of burial with core temperature less than 32 degrees Celsius. The patient is non-responsive with vital signs.
(bradycardia, 30 bpm and thread pulse). He has obvious blunt chest trauma likely from being struck by a tree as well as multiple long bone fractures. He suffers ventricular fibrillation and CPR is initiated. He is transferred to a Level 1 Trauma center, cannulated for VA-ECMO.
<table>
<thead>
<tr>
<th>Data Field</th>
<th>Definition / Explanation / Example</th>
<th>Data Entry Rules</th>
<th>Collection/ Modification</th>
<th>Table Name</th>
<th>Column Name / Stored Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and time of trauma</td>
<td>Date and time when the accident or injury occurred. If this time is not known please provide an estimated time and check the box “Time estimated”.</td>
<td>jjjj/mm/dd hh:mm</td>
<td></td>
<td>TRAUMA.TraumaAddendum</td>
<td>DateOfTrauma</td>
</tr>
<tr>
<td>This is a required field.</td>
<td></td>
<td>Hard Limit: Date of Trauma must be before hospital admit date.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check box if time is estimated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Days to hospital admission and days to ECLS cannulation will be calculated from this value</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Mechanism of injury | **Blunt:** Blunt trauma stems from forces like compression (crushing), shearing (tearing), acceleration, and deceleration or is caused by a dull object or surface. In blunt, non-penetrating trauma, there may be an impact, but the skin is not necessarily broken. Blunt trauma is the initial trauma, from which develops more specific types such as contusions, abrasions, lacerations, and/or bone fractures. Some examples of blunt trauma include, fall from a height more than 10FT (3 m), a bomb blast, being hit with a blunt object like a baseball bat or even a fist.
In the case of **crush injury**, choose “blunt”
Example: An 18yo female suffered severe blunt thoracic trauma after he was hit by a truck. Initial arterial blood gas analysis revealed: pH 7.12, PaCO\textsubscript{2} 65.9 mmHg, PaO\textsubscript{2} 55 mmHg. Endotracheal bleeding was observed during intubation. Extensive lung contusion of both lungs with a hemopneumo-thorax, pneumomediastinum, and fracture of the right first rib are shown on chest computed tomography. There was no injury to | Indicate “yes” by checking the box next to the mechanism. | | TRAUMA.TraumaAddendum | MechanismBlunt MechanismPenetrating MechanismBurns BurnsPercentage |
| **This is a required field.** | | Each mechanism has its own corresponding box. | | | |
| | | By checking the corresponding box, the user affirms that mechanism is present. | | | |
| | | If a box is not checked, it means that mechanism was not present. | | | |
| | | Multiple indications are possible. | | | |
| | | At least one of the items in this list must be checked. | | | |
the head and neck, cardiovascular system or abdominal organs. Her injury severity score (ISS) was 25. Her oxygenation did not improve after proning for 12 hours. She was cannulated for veno-venous ECMO.

For **mixed blunt/penetrating** click both.

Penetrating trauma occurs when an object pierces the skin and enters a tissue of the body, creating an open wound. The penetrating object may remain in the tissues, come out the way it entered, or pass through the tissues and exit from another area (perforating injury). Examples include stab wounds and ballistic trauma. In addition to injury caused directly by the object that enters the body, penetrating injuries may be associated with secondary blunt injuries, such as those that may occur from a blast injury.

Example: A 32yo male was referred to a level one trauma center after being stabbed in the chest. He suffered penetrating chest trauma with traumatic arrest from cardiac tamponade, left ventriculotomy and mitral valve injury. The patient underwent resuscitative thoracotomy converted to clamshell thoracotomy for hemorrhage control. Ventriculotomy was repaired on initial damage control operation. He was continued on VA-ECMO and bridged to definitive cardiac repair 3 days later.

For **mixed blunt/penetrating** click both.

Burns with or without inhalation injury. Burn is an injury that can involve the skin all the way to deeper tissues, such as muscle, tendons, or bone (first to fourth degree). This can include inhalation burns by chemical, heat and external chemical (e.g. acid). Burns are classified as thermal (heat-related), chemical, electrical, and radiation.

If “Burns with or without inhalational injury” is selected, there is an additional field required: **“PERCENTAGE OF BODY SURFACE AREA BURNED”**

Hard Limit: if checked then must also fill in Percentage of Body Surface Area Burned. This should only be filled in if Burns and/or Inhalational Injury is Checked

This box is represented as a number between 0% and 100%
Example: A 40yo male is transferred to a burn center after an explosion sustaining > 50% TBSA burns. After initial fluid resuscitation, escharotomies to his lower extremities and torso were performed. He developed acute respiratory distress syndrome within 36 hours of injury with increasing ventilator support on FiO2 100% and PaO2 ≤ 50 mm Hg. The Patient was cannulated for veno-venous ECMO.

Percentage of Body Surface Area Burned: This is the percentage of total body surface area (TBSA) affected by partial thickness or full thickness burns. For patients over the age of 16 years the “rule of nines” is commonly used for the measurement of burn surface area. The “rule of nines” indicates the percentage of TBSA accounted for by various parts of the body. Nine per cent for the head and each arm, 18 per cent each for lower limbs and front and back of the trunk, and 1 per cent for the perineal region. Ref: Wallace AB (1951) *The exposure treatment of burns.* Lancet. 1, 501

| Trauma related injury | Trauma related injuries refer to traumatic injuries which are present but are **not the leading indication for ECLS.** Multiple injuries are often associated with car or motorbikes crashes occurring at high velocities and acceleration forces. Some injuries may be missed during the primary survey and detected during the course.
Example: multiple traumatic injuries, such as a serious head injury in addition to a blunt chest trauma. Related injuries are multiple fractures of lower extremities and pelvis in addition to coronary artery rupture and cardiac arrest. | Indicate “yes” by checking the box next to the related injury. Each injury has its own corresponding box and by checking the corresponding box, the user affirms that injury is present. If a box is not checked, it means that injury was not present. Multiple indications are possible. | TRAUMA.TraumaRelatedInjuries | Lookup table:
TRAUMA.TraumaRelatedInjuryCodes
1 = Traumatic brain injury with bleeding
2 = Traumatic brain injury, with no bleeding (increased ICP <20mmHg)
3 = Unstable spine fracture
4 = Long bone fractures (at least 2 extremities)
5 = Pelvic fracture
6 = Chest trauma
7 = Tracheal/bronchial injury
8 = Cardiac injury
9 = Abdominal trauma
10 = Great vessel injury
11 = Crush injury (e.g. avalanche)
12 = Inhalation injury |
At least one of the items in this list must be checked. Inhalation and/or Crush injury must be accompanied by at least one other injury.

Traumatic brain injury (TBI) with bleeding: TBI bleeding multiple or > 1cm in CT scan. TBI means an insult to the brain from an external mechanical force which can cause intracerebral hemorrhage, with bleeding in the brain tissue itself. Intracranial hemorrhage involves bleeding that is not mixed with tissue. These lesions include epidural hematoma, subdural hematoma, subarachnoid hemorrhage, and intraventricular hemorrhage.

Traumatic brain injury (TBI), with no bleeding (elevated ICP > 20 mmHg)
TBI means an insult to the brain from an external mechanical force with cerebral contusion (bruising of brain tissue) which can cause elevated intracranial pressure (ICP). Clinical deterioration or death may follow increased ICP that shift intracranial contents, distorts vital brainstem centers, or compromise cerebral perfusion. The normal ICP range is 5 - 15 mmHg, levels above 20mmHg are defined as elevated ICP and require an intervention.

Unstable spine fracture or more vertebral bodies fractured with or without spinal cord injury. Spinal instability is caused by torn ligaments and broken bones. It can result in damage to the spinal nerves or spinal cord. Unstable fractures usually require surgery to prevent spinal cord or nerve injury. Patients with unstable spinal cord fracture are at substantial risk for pulmonary complications.

Long bone fractures (at least 2 extremities): Long bones are defined as the humerus, radius, ulna,
<table>
<thead>
<tr>
<th>femur, tibia, and fibula. They can cause severe hemorrhage or predispose to other life-threatening complications like fat embolism.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvic fracture includes any breaks of the sacrum, hip bones (ischium, pubis, ilium), or tailbone. Pelvic fractures can damage arteries or veins causing life-threatening hemorrhage. There is also a high incidence of pulmonary complications including Acute Respiratory Distress Syndrome (ARDS) and pulmonary embolism.</td>
</tr>
<tr>
<td>Chest trauma is any form of physical injury to the chest including the ribs, heart and lungs. Chest trauma may include multiple rib fractures, fracture of the 1st rib, lung contusion, pneumothorax, parenchymal bleeding or hemothorax, tension pneumothorax. Patients with multiple rib fractures, esp. 1st rib, are at substantial risk for pulmonary contusion and related complications like ARDS. A pneumothorax is a collection of air in the pleural space between the lung and the chest wall and may result in atelectasis or cardiac arrest (tension pneumothorax). A traumatic pneumothorax may result from either blunt trauma or penetrating injury to the chest wall and also may also be observed in blasts injury even though there is no apparent injury to the chest. A hemothorax is an accumulation of blood within the pleural cavity. Parenchymal hemorrhage is bleeding within lung parenchyma.</td>
</tr>
<tr>
<td>Tracheal/bronchial injury includes tracheal/bronchial contusions, lacerations, hematomas, avulsions, and fracture/dislocation of the tracheal/bronchial cartilages. In rare cases, a complete transaction of the trachea/bronchus may occur.</td>
</tr>
<tr>
<td>Cardiac injury includes chest trauma that causes contusion of myocardial muscle, rupture of a cardiac chamber, disruption of a heart valve acute resulting in cardiac tamponade, pericardial or myocardial lacerations, cardiac luxation,</td>
</tr>
</tbody>
</table>

* must be accompanied by another injury not including inhalation injury |

* must be accompanied by another injury not including crush injury |

<table>
<thead>
<tr>
<th>Chest trauma is any form of physical injury to the chest including the ribs, heart and lungs. Chest trauma may include multiple rib fractures, fracture of the 1st rib, lung contusion, pneumothorax, parenchymal bleeding or hemothorax, tension pneumothorax. Patients with multiple rib fractures, esp. 1st rib, are at substantial risk for pulmonary contusion and related complications like ARDS. A pneumothorax is a collection of air in the pleural space between the lung and the chest wall and may result in atelectasis or cardiac arrest (tension pneumothorax). A traumatic pneumothorax may result from either blunt trauma or penetrating injury to the chest wall and also may also be observed in blasts injury even though there is no apparent injury to the chest. A hemothorax is an accumulation of blood within the pleural cavity. Parenchymal hemorrhage is bleeding within lung parenchyma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracheal/bronchial injury includes tracheal/bronchial contusions, lacerations, hematomas, avulsions, and fracture/dislocation of the tracheal/bronchial cartilages. In rare cases, a complete transaction of the trachea/bronchus may occur.</td>
</tr>
<tr>
<td>Cardiac injury includes chest trauma that causes contusion of myocardial muscle, rupture of a cardiac chamber, disruption of a heart valve acute resulting in cardiac tamponade, pericardial or myocardial lacerations, cardiac luxation,</td>
</tr>
</tbody>
</table>
myocardial contusion or ischemia secondary to a vessel injury. Sometimes a blow force to the anterior chest wall causes cardiac arrest without any structural lesion.

Abdominal trauma is the injury to abdomen, including abdominal wall, solid organ (liver, spleen, pancreas, kidneys), hollow viscus (stomach, small intestine, colon, ureters, bladder) or vasculature.

Great vessel injury is the injury of large vessels that bring blood to and from the heart, including the Superior Vena Cava, Inferior Vena Cava, Pulmonary Arteries, Pulmonary Veins, and Aorta.

Crush injury (*cannot be reported as isolated injury*) may occur in avalanche or earthquakes, to victims that have been trapped under fallen snow, soil mass or masonry. Crush injury means compression of extremities or other parts of the body that causes muscle swelling and/or neurological symptoms in the affected areas. Systemic manifestation of crush injury is crush syndrome characterized by shock and renal failure due to traumatic rhabdomyolysis.

Inhalation injury (*cannot be reported as isolated injury*) Inhalation injury refers to damage to the respiratory tract from heat, smoke, or chemical irritants carried into the airway during inspiration. Toxin exposure in smoke inhalation may be related e.g. to carbon monoxide or cyanide.
<table>
<thead>
<tr>
<th>Data Field</th>
<th>Definition / Explanation / Example</th>
<th>Data Entry Rules</th>
<th>Collection/Modification</th>
<th>Table Name</th>
<th>Column Name / Stored Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviated Injury Score (AIS)</td>
<td>This is a required field. Abbreviated Injury Score (AIS) is an anatomically based consensus-derived global severity scoring system that classifies each injury in every body region according to its relative severity on a six-point ordinal scale: No injury (0), Minor (1), Moderate (2), Serious (3), Severe (4), Critical (5), Maximal (currently untreatable) as (6). This information is to be obtained from the local Trauma Center Coordinator. The full AIS definitions are available on the AAST website: https://www.aast.org/resources-detail/injury-scoring-scale A complete description of each score is provided in Appendix A. FOR EACH OF THESE FIELDS WE WILL ASK: IS THERE AN INJURY IN THIS AREA? YES OR NO AIS Head AIS Face AIS Neck AIS Thorax AIS Abdomen AIS Spine AIS Upper Extremity AIS Lower Extremity AIS External and other (e.g. skin) IF THE ANSWER IS YES, THEN THE USER MUST ENTER A 1 TO 6 FROM A DROP DOWN. IF THE ANSWER IS NO, WE SAVE 0 FOR THIS AREA IN THE DATABASE.</td>
<td>AIS Score: 0 through 6 for each item according to AIS Definitions of Trauma Registry</td>
<td>Hard Limit: SOMETHING MUST BE SELECTED FOR EACH ITEM. ONE OF THE CATEGORIES MUST BE SELECTED AS YES AND SOMETHING MUST BE CHOSEN FROM THE DROP DOWN IN THAT PARTICULAR AREA. ALL OF THE ITEMS CANNOT BE NO.</td>
<td>TRAUMA.TraumaAddendum</td>
<td>AISHead AISFace AISNeck AISThorax AISAbdomen AISSpine AISUpperExtremity AISLowerExtremity AISExternalOther Value: 0-6</td>
</tr>
<tr>
<td>Injury Severity Score (ISS)</td>
<td>THIS IS A CALCULATED VALUE AND THE USER DOES NOT ENTER THIS VALUE. WE WILL CALCULATE AND DISPLAY IT ON THE SCREEN AND INCLUDE A LABEL THAT SAYS – Range 1-75 The ISS score takes values from 1 to 75.</td>
<td></td>
<td></td>
<td>TRAUMA.TraumaAddendum</td>
<td>InjurySeverityScore</td>
</tr>
</tbody>
</table>
Please check the Injury Severity Score (ISS) and make sure it matches what you expect. If it does not match, please adjust the AIS values above. **Trauma Addendum includes 9 categories due to 9 anatomical chapters.** We suggest entering the AIS data for each 9 anatomical chapters. The ISS will be calculated automatically.

Injury Severity Score (ISS) is an anatomical scoring system that provides an overall score for patients with multiple injuries. The ISS score is the only anatomical scoring system in use and correlates linearly with mortality, morbidity, hospital stay and other measures of severity.

Each injury is assigned an Abbreviated Injury Scale (AIS) score and is allocated to one of six body **regions** (Head, Face, Chest, Abdomen, Extremities (including Pelvis), External and other). Only the highest AIS score in each body region is used.

This information is to be obtained from the local Trauma Center Coordinator

However, several online available ISS calculators include 6 body **regions.** Same way, take the highest AIS severity code in each of the three most severely injured ISS body **regions**, square each AIS code and add the three squared numbers for an ISS (ISS = A^2 + B^2 + C^2 where A, B, C are the AIS scores of the three most injured ISS body **regions**). An example of the ISS calculation and online ISS Calculator: https://www.mdcalc.com/injury-severity-score-iss

This, there are 6 Injury Severity Score **Body Regions** to which injuries can be assigned, although the AIS 2005 - Update 2008 dictionary is divided into 9 anatomical chapters. Trauma Addendum includes 9 categories due to 9 anatomical chapters.

The idea behind is getting more specific data about the injury patterns and severity of the injury in patients supported on ECMO, analyzing the outcomes.

But, it means also, that the ISS calculation in Trauma Addendum might be different (ISS score higher) in cases when e.g. severe abdominal injury and spine injury will be calculated separately as most severely injured **regions**.

If any injury is assigned an AIS of 6 (unsurvivable injury, currently untreatable), the ISS score is automatically assigned to 75

IF ANY AIS SCORE IS A 6, THE ISS IS AUTOMATICALLY 75.

Hard Limit: BETWEEN 1 AND 75.
Example of calculation for 6 body regions

ISS = 16+9+16=41

AIS 4 for Head and neck – this region also includes injuries to cervical spine.

AIS 3 for Face – this includes facial skeleton, nose, mouth, eyes and ears.

AIS 3 for Thorax – this includes chest injuries to rib cage, thoracic spine and diaphragm.

AIS 4 for Abdomen – includes abdominal organs and lumbar spine.

AIS 2 for Extremities - includes pelvic skeleton injuries and sprains, fractures, dislocations.

AIS 0 for External and other – include injuries such as lacerations, contusions, burns, hypothermia.

ISS Calculated for Abdomen AIS 4 and Lumbal Spine AIS 4 separately counts:

ISS = 16+16+16=48

If available, we suggest entering the AIS data for each 9 anatomical chapters. The ISS will be calculated automatically. Detailed analyses of all the data will be performed; expected differences will be calculated separately and highlighted in the results. The aim is to recognize risk injury patterns and their severity in ECMO supported patients.

References:
Procedures

This section details the trauma related procedures associated with the patient being placed on ECLS. Procedures are listed as either having “occurred” or “not”. If “occurred”, then check the box next to the procedure and give the “date” and “time” it occurred. Multiple procedures may be entered, however if the same procedure occurred more than once, please enter the first occurrence only. Typically procedures that are pertinent only to the specific admission for ECLS and its associated trauma are entered. Procedures that occur immediately prior to ECLS may be included, if the Center determines they are pertinent to the ECLS run and its associated trauma. Procedures performed after ECLS may also be added, including those associated with discharge and/or death.

Each procedure listed here represents one or more Current Procedural Terminology (CPT) code(s). CPT codes are the United States’ standard for how medical professionals document and report medical, surgical, radiology, laboratory, anesthesiology, and evaluation and management (E/M) services. Each CPT code and its corresponding category is listed in “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes”. Procedural codes can be obtained from the local Trauma Center Coordinator. Once obtained, these can be matched to the corresponding procedure and entered accordingly.

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Definition / Explanation / Example</th>
<th>Data Entry Rules</th>
<th>Collection/ Modification</th>
<th>Table Name</th>
<th>Column Name / Stored Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did the patient have a surgical procedure while on ECMO.</td>
<td>This question refers to whether or not the patient had a surgical procedure immediately prior to, during, or immediately after being placed on ECMO. Only procedures related to the patient’s traumatic injury are relevant here. If procedures were immediately prior to or after coming off ECMO, they should be pertinent to the ECMO run. IF THE ANSWER IS YES, THEN AT LEAST ONE SURGICAL PROCEDURE MUST BE COMPLETELY ANSWERED</td>
<td>Indicate “yes” or “no” by checking the box. IF THE ANSWER IS “YES”, ALL PROCEDURES LISTED BELOW WILL POPULATE.</td>
<td>TRAUMA.TraumaAddendum</td>
<td>PatientSurgicalProcedure</td>
<td></td>
</tr>
<tr>
<td>Date and time of surgical procedure</td>
<td>Date and time a surgical procedure has been performed. This is a required field if “yes” marked above. If the exact time is unknown, please estimate a time and check the box marked “estimated”. THE SAME PROCEDURE MAY BE DONE MULTIPLE TIMES, WE ARE COLLECTING DATE/TIME FOR THE FIRST PROCEDURE.</td>
<td>jjjj/mm/dd hh:mm Soft Limit: should be after admission to the ECLS center. Hard Limit: Date/Time of</td>
<td>TRAUMA.TraumaAddendum</td>
<td>DateSurgicalProcedure</td>
<td></td>
</tr>
<tr>
<td>Surgical or invasive procedures</td>
<td>Procedure after Trauma</td>
<td>Check box if time estimated</td>
<td>TRAUMA.SurgInvProcedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical or invasive procedures</td>
<td>Procedure after Trauma</td>
<td>Check box if time estimated</td>
<td>TRAUMA.SurgInvProcedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial Pressure Monitor: Includes placement of device for measurement of intracranial pressure via percutaneous approach or via natural or artificial opening. See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes</td>
<td>Indicate “yes” by checking the box next to the indication. Each indication has its own corresponding box. By checking the corresponding box, the user affirms that indication is present. If a box is not checked, it means that indication was not present. Multiple indications are possible. At least one of the items in this list must be checked.</td>
<td>TRAUMA.SurgInvProcedures</td>
<td>Lookup table: RAUMA.SurgInvProcedureCodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = Intracranial Pressure Monitor</td>
<td>2 = External Ventricular Drain placement</td>
<td>3 = Craniotomy / Craniectomy</td>
<td>4 = Thoracotomy with reconstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 = Thoracotomy or thoracoscopy without reconstruction</td>
<td>6 = Thoracic drainage with or without thoracotomy</td>
<td>7 = Cardiac Surgery</td>
<td>8 = Pericardial drain placement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 = Great Vessel repair (surgical reconstruction)</td>
<td>10 = Great Vessel repair (stenting)</td>
<td>11 = REBOA</td>
<td>12 = Pelvic stabilisation (fixateur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This information is to be obtained from the local Trauma Center Coordinator</td>
<td></td>
<td>13 = Radiological embolization of hemorrhage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 = Laparotomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 = ORIF, spinal stabilisation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 = Surgical debridement/Fasciotomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 = Escharotomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 = Others (e.g. disarticulation, amputation)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **External Ventricular Drain:** Includes placement of device for drainage of cerebral spinal fluid via percutaneous approach or via natural or artificial opening. | | |
| See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes | | |

| **Craniectomy or craniotomy:** supratentorial or infratentorial exploration (posterior fossa) for evacuation of hematoma, drainage of intracranial abscess, or decompression for treatment of intracranial hypertension. This can be supratentorial or infratentorial, extradural or subdural, intracerebral, extradural subdural, or intracerebellar. Craniectomy or craniotomy, decompressive, with or without duraplasty, for treatment of intracranial hypertension, without evacuation of associated intraparenchymal hematoma; with or without lobectomy | | |
| See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes | | |

| **Thoracotomy with reconstruction** is a surgery opening the chest with the incision in the chest wall between the ribs. The reconstruction or repair of the bronchus to restore the integrity of the lumen can be performed through thoracotomy (e.g., bronchoplasty), graft repair, excision stenosis and anastomosis. Thoracotomy can be performed with or without damage control. | | |
Thoracotomy or thoracoscopy without reconstruction is a surgery opening the chest with incision in the chest wall between the ribs (e.g. for exploration of penetrating wound), with exploration for control of traumatic hemorrhage and/or repair of lung tear, with removal of intrapulmonary foreign body. Thoracotomy can be performed with or without damage control. Further indications for thoracotomy are:
- Removal of lung, pneumonectomy; with resection of segment of trachea followed by broncho-tracheal anastomosis
- Repair lung hernia through chest wall
- Closure of major bronchial fistula

Thoracoscopy, (VATS) means video assisted thoracic surgery done with a thoracoscope, a thin flexible tube with a light and a video camera on the end. The tube is put in through a cut made near the lower end of the shoulder blade between the ribs for exploration of chest.

Thoracic drainage with or without thoracotomy is a procedure that places a tube in the space between the lung and chest wall (pleural space). It includes connection to drainage system. It is done to drain fluid, blood, or air from the area around the lungs. Thoracentesis is a procedure performed with needle or catheter for aspiration of the pleural space with or without image guidance.

Cardiac Surgery includes but is not limited to:

Thoracoscopy (VATS): video assisted thoracic surgery with a thoracoscope, a thin flexible tube with a light and a video camera on the end. Thoracoscopy in cardiac surgery is indicated for removal of clot or foreign body from pericardial sac; with creation of pericardial window or partial resection of pericardial sac for drainage.
Pericardiectomy: with or without cardiopulmonary bypass is a surgical procedure in which all or part of the pericardium is removed.

Repair of cardiac wound with or without cardiopulmonary bypass

Cardiotomy: an exploratory incision is made in the heart e.g. for removal of foreign body, atrial or ventricular thrombus. It can be performed with or without cardiopulmonary bypass

Coronary artery bypass grafting (CABG): procedure to restore or improve the blood flow to the heart. It may be needed when the coronary arteries, are injured, narrowed or blocked.

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

Pericardial drainage (pericardiocentesis) is done to relieve fluid (e.g. blood in case of injury) and its pressure on the heart by creation of pericardial window or partial resection for drainage and catheter which is inserted into the pericardial space. It can also be performed following needle insertion with ultrasound or fluoroscopic guidance.

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

Great vessel repair is surgical reconstruction with bypass graft of vein subclavian-brachial, subclavian-axillary, axillary-axillary, axillary-femoral, axillary-brachial, brachial-brachial, axillary-femoral-femoral, femoral-popliteal, femoral-femoral configuration. Great vessels are superior vena cava, inferior vena cava, pulmonary arteries, pulmonary veins, aorta.

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

Great vessel repair (stenting) is minimally-invasive procedure inserting a stent graft (a tube supported by metal wire stents that reinforces the weak spot, e.g. the dissection or small injury in the aorta) is through small incisions in the groin. It’s shorted as EVAR which means an endovascular repair. The angioplasty stenting can be performed for aorta traumatic aneurysm, pseudoaneurysm, dissection, penetrating injuries, traumatic disruption)
See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA): vascular occlusion for treatment of traumatic non-compressible chest, abdomen, or pelvis hemorrhage. This technique involves rapidly introduction of a flexible catheter via the femoral artery into the aorta and inflating a balloon at its tip.

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

Pelvic stabilization (fixateur): is an external fixation of the pelvis indicated for temporary or definitive stabilization of unstable pelvic ring injuries, pelvic ring fracture, dislocation, diastasis or subluxation.

External fixation of the pelvis is indicated for temporary or definitive stabilization of unstable pelvic ring injuries and is not fracture-specific.

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

Radiological embolization of hemorrhage. Vascular embolization or occlusion for arterial or venous hemorrhage or lymphatic extravasation means to place medications or synthetic materials called embolic agents through a catheter into a blood vessel to block blood flow to an area of the body, used to control the bleeding closing off vessels supplying blood to abdominal, pelvic, or extremity vessels.

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

Laparotomy is a surgical procedure involving a large incision through the abdominal wall to gain access into the abdominal cavity. Laparotomy can be performed with or without damage control. Laparotomy is performed for exploration, repair, management of hemorrhage, extensive debridement, coagulation and/or suture, with or without packing, anastomosis, reconstruction, placement of drains, drainage of peritoneal abscess or localized peritonitis, subdiaphragmatic or subphrenic abscess, retroperitoneal abscess, also reopening of recent laparotomy (re-laparotomy).
Open reduction and internal fixation (ORIF) or spinal stabilization is a 2-part surgical procedure to fix broken bones. First, the broken bone is reduced or put back into place. Second, an internal fixation device is placed on the bone. This can be done with screws, plates, rods, or pins that are used to hold the broken bone together. This open treatment of fractures includes internal fixation, arthrodesis, laminectomy with exploration and/or decompression of spinal cord. Decompression surgery (laminectomy) opens the bony canals through which the spinal cord and nerves pass, creating more space for them.

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

Surgical debridement /Fasciotomy:
Surgical Debridement is a surgical procedure for exploration of penetrating wound chest, abdomen, flank, back, postoperative hemorrhage, thrombosis or infection. Fasciotomy is the incision of the fascia to release of compartment syndrome on extremities. The below knee leg is the most likely compartment to develop acute compartment syndrome, followed by the forearm, thigh, and arm. Compartment syndrome occurs when the pressure within a defined compartmental space increases past a critical pressure threshold, thereby decreasing the perfusion pressure to that compartment.

Escharotomy is a surgical procedure of fractional fenestration of burn and traumatic scars for functional improvement, performed by making an incision through the eschar to release the pressure. Deep dermal and full thickness burns develop a rigid and inelastic tissue termed “Eschar”. In deep circumferential or near circumferential burns of limbs or chest, as edema forms the inelastic eschar can cause a buildup of pressure and act like a tourniquet. This pressure can lead to significant complications such as respiratory compromise requiring a surgical procedure known as an “Escharotomy”.

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes
Others (e.g. disarticulation, amputation):
This category includes any surgical procedures relevant to the ECMO run not captured above. They include but are not limited to: Disarticulation: traumatic separation of two bones at their joint (shoulder, hip, knee) and/or Amputation: total removal of a limb (arm, forearm, thigh, leg) by trauma or by a surgeon in case of severe injury or it’s complications (impaired circulation, infection, sepsis)

See: “ELSO Registry Trauma Addendum, Appendix B: Procedures and CPT codes” for complete list of codes

| Damage Control Surgery | Damage Control Surgery: Did the Surgical or invasive procedures above, include Damage Control Surgery? | “yes”, “no” or “unknown” by checking the box. | TRAUMA.TraumaAddendum | DamageControlSurgery | Yes = 1
No = 2
Unknown = 3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>This is a required field.</td>
<td>Damage Control Surgery (DCS) The approach provides a limited surgical intervention in order to control both hemorrhage and contamination. This subsequently allows to focus on reversing the physiologic insult prior to completing a definitive repair.</td>
<td>If yes is checked then at least one of the above procedures must be indicated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation transfusion, blood products, anticoagulation

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Definition / Explanation / Example</th>
<th>Data Entry Rules</th>
<th>Collection/Modification</th>
<th>Table Name</th>
<th>Column Name / Stored Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-ECLS Course</td>
<td>Hemoglobin: refers to the lowest hemoglobin parameter within the 24 hours before ECLS cannulation.</td>
<td>Units= g/dl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non mandatory field</td>
<td>Example: In 26yo female was hit by a truck and suffered blunt chest and abdominal trauma and subtotal amputation of her lower extremity. She was intubated and admitted to the ER with a tourniquet on her leg. First arterial blood gas (ABG) analysis showed a Hb 4.7 g/dl. Focused assessment with sonography for trauma (FAST) detected ruptured spleen. Her next Hb was 3.8 g/dl (lowest Hb parameter before ECLS cannulation). The patient was cannulated for VA-ECMO and transferred to OR for emergency laparotomy.</td>
<td>Range soft limit: 3.0 g/dl to 18.0 g/dl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range hard limit: 0.1 g/dl to 20.9 g/dl</td>
<td>Range hard limit: 0.1 g/dl to 20.9 g/dl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ONE DECIMAL PLACE ONLY</td>
<td>ONE DECIMAL PLACE ONLY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24 h pre-ECLS Course</th>
<th>DID THIS PATIENT RECEIVE ANY BLOOD PRODUCTS IN THE 24 HOURS PRIOR TO ECLS CANNULATION? This question refers to whether or not the patient had any blood product transfusions in the 24h prior to ECMO cannulation. Blood products include: Packed Red Blood Cells, Fresh Frozen Plasma, Platelets, or Cryoprecipitate.</th>
<th>TRAUMA.TraumaAddendum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfusion / blood products: refers to the type and amount (where applicable) of blood products transfused in the 24 hours prior to ECLS cannulation. Cryoprecipitate requires a YES OR NO ONLY</td>
<td>Indicate “yes” or “no” by checking box. If the answer is “YES”, all options listed below will populate and one or more options in this section must be entered. If “No”, the next section is hidden.</td>
<td>ReceivedBP24</td>
</tr>
<tr>
<td></td>
<td>Units: mL Indicate “yes” by checking box. Multiple indications are possible PRBC and FFP -</td>
<td>TRAUMA.TraumaAddendum</td>
</tr>
<tr>
<td></td>
<td>Soft Limits: 0 to 15,000 mL Hard Limits: 0 to 25,000mL</td>
<td>PRBC24</td>
</tr>
<tr>
<td></td>
<td>Platelets Soft Limits 0 to 7,000mL Hard Limits 0 to 15,000mL</td>
<td>FFP24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FFPEstimate24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Platelets24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PlateletsEstimate24</td>
</tr>
</tbody>
</table>
If this is an estimation, please indicate. Use the following amounts to estimate mL from Units.

Typically, a unit of PRBC’s or FFP contains approximately:

1U Packed Red Blood Cells (PRBC)=350 mL
1U Fresh Frozen Plasma (FFP) = 200 – 250 mL
1U Platelets = 250 – 350 mL

Example: 26yo female was cannulated VA-ECMO during circulatory arrest due to bleeding and received 25 Units PRBC, 40 Units FFP, 10 Units of Platelets, and 4 Units of Cryoprecipitate. The user should check the box for PRBC, FFP, Platelets, and Cryoprecipitate.

Put the amounts of transfused products in mL:
25 x 350 mL = 8,750 mL PRBC, 40 x 250 mL = 10,000 mL FFP, 10 x 250 mL = 2,500 mL Platelets and 4 x Cryo.

Consult the blood bank at your hospital (or department where blood is stored and preserved for later use in blood transfusion) to know the amounts of mL in each unit.

Please indicate by checkbox if Amicar or Tranexamic Acid (TXA) was used in the first 24h prior to ECMO cannulation.

Please indicate by checkbox Factor VIIa was used in the first 24 hours prior to ECMO cannulation.
First 72 h ECLS Course

Transfusion / blood products

This is a required field.

DID THIS PATIENT RECEIVE ANY BLOOD PRODUCTS IN THE 72 HOURS AFTER ECLS CANNULATION? This question refers to whether or not the patient had any blood product transfusions in the 72 hours after ECMO cannulation.

Blood products include: Packed Red Blood Cells, Fresh Frozen Plasma, Platelets, or Cryoprecipitate.

Indicate “yes” or “no” by checking box.

If the answer is “YES”, all options listed below will populate and one or more options in this section must be entered. If “No”, the next section is hidden.

Transfusion / blood products: refers to the type and amount (where applicable) of blood products transfused in the 72 hours after ECLS cannulation.

Cryoprecipitate requires a **YES OR NO ONLY**

Please give the exact amount transfused in mL. If unable to determine, then estimate the total volume of blood product transfused the 72 hours after ECLS in mLs.

If this is an estimation, please indicate. Use the following amounts to estimate mL from Units.

Typically, a unit of PRBC’s or FFP contains approximately:

1U Packed Red Blood Cells (PRBC) = 350 mL
1U Fresh Frozen Plasma (FFP) = 200 – 250 mL
1U Platelets = 250 – 350 mL

Example: 26yo female was cannulated VA-ECMO during circulatory arrest due to intraabdominal bleeding. Emergency laparotomy with intraabdominal packing was performed immediately. Intraoperatively and during the first 72

<table>
<thead>
<tr>
<th>Units: mL</th>
<th>Indicate “yes” by checking box.</th>
</tr>
</thead>
</table>
| **Multiple indications are possible** PRBC and FFP -
 Soft Limits: 0 to 15,000 mL
 Hard Limits: 0 to 25,000mL |
| Platelets
 Soft Limits: 0 to 7,000mL
 Hard Limits: 0 to 15,000mL |
| PRBC - Packed Red Blood Cells (TEXT BOX in mL WITH ESTIMATED CHECK BOX AFTER IT) |
| FFP - Fresh Frozen Plasma (TEXT BOX in mL with estimated check box after it) |
| Platelets (TEXT BOX in mL with ESTIMATED CHECK BOX AFTER IT) |
| **Cryoprecipitate requires a YES OR NO ONLY** |

TRAUMA.TraumaAddendum

ReceivedBP72

- **Yes = 1**
- **No = 0**

TRAUMA.TraumaAddendum

PRBC72

- **PRBCEstimate72**
- **FFP72**
- **FFPEstimate72**
- **Platelets72**
- **PlateletsEstimate72**
hours after the VA-ECMO cannulation, she received 5 Units PRBC, 4 Units FFP, 2 Units Platelets and 2 Units Cryoprecipitate.

The user should check the boxes PRBC, FFP, Platelets, and Cryoprecipitate “yes”.

Put the amounts of transfused products in mL:
5 x 350 mL = 1,750 mL PRBC, 4 x 250 mL = 1,000 mL FFP, 2 x 250 mL = 500 mL Platelets and 2 x Cryo.
Consult the blood bank at your hospital (or department where blood is stored and preserved for later use in blood transfusion) to know the amounts of mL in each unit.

Please indicate by checkbox if Amicar or Tranexamic Acid (TXA) was used in the first 72h after ECMO cannulation.

<table>
<thead>
<tr>
<th>DID THE PATIENT RECEIVE AMINO CAPRIOC ACID (AMICAR) OR TRANEXAMIC ACID (TXA) IN THE 72 HOURS AFTER ECLS CANNULATION? YES OR NO</th>
</tr>
</thead>
</table>

Please indicate by checkbox Factor VIIa was used in the first 72 hours after ECMO cannulation.

<table>
<thead>
<tr>
<th>DID THE PATIENT RECEIVE FACTOR VIIa IN THE 72 HOURS AFTER ECLS CANNULATION? YES OR NO</th>
</tr>
</thead>
</table>

Anticoagulation free ECLS Course

This is a required field.

Example: 26yo female suffered blunt chest and abdominal trauma and was cannulated VA-ECMO during circulatory arrest due to intraabdominal bleeding (liver rupture). Emergency laparotomy with intraabdominal packing was performed immediately. No heparin was given during the first 48 hours of ECMO run.

<table>
<thead>
<tr>
<th>DROP DOWN BOX FOR YES, NO, UNKNOWN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TRAUMA.TraumaAddendum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anticoagulationfree24</th>
</tr>
</thead>
</table>

| Yes = 1 |
| No = 2 |
| Unknown = 3 |
This patient received anticoagulation-free ECLS for > 24 hours after ECLS cannulation was performed. Indicate “yes” by checking box.